Addition invariance with respect to bi-partitions, nullified players and proportional rules

S. Béal1, A. Casajus2, F. Huettner1, E. Rémila3, P. Solal3

1 CRESE, Université de Franche Comté, France
2 Universität Leipzig, LSI (Leipziger Spieltheoretisches Institut), Germany
3 GATE Lyon Saint-Etienne, Université de Saint-Etienne, France

July 10, 2013
Cooperative game theory aims at combining axioms to study rules that distribute the worth of the grand coalition.

Two main types of rules:

- **marginalist (contributory) rules**, such as the Shapley value and the Banzhaf value.
- **egalitarian rules**, such as the equal division and the equal surplus division.

The two types can be compared axiomatically (van den Brink, 2007, Kamijo and Kongoc, Béal et al., 2012b).

The two types satisfy the axiom of **symmetry**.
Cooperative game theory aims at combining \textit{axioms} to study \textit{rules} that distribute the worth of the grand coalition.

Two main types of rules:

- \textbf{marginalist (contributory) rules}, such as the Shapley value and the Banzhaf value.
- \textbf{egalitarian rules}, such as the equal division and the equal surplus division.

The two types can be compared axiomatically (van den Brink, 2007, Kamijo and Kongoc, Béal et al., 2012b).

The two types satisfy the axiom of \textit{symmetry}.
Cooperative game theory aims at combining axioms to study rules that distribute the worth of the grand coalition.

Two main types of rules:

- **marginalist (contributory) rules**, such as the Shapley value and the Banzhaf value.
- **egalitarian rules**, such as the equal division and the equal surplus division.

The two types can be compared axiomatically (van den Brink, 2007, Kamijo and Kongoc, Béal et al., 2012b).

The two types satisfy the axiom of **symmetry**.
Cooperative game theory aims at combining axioms to study rules that distribute the worth of the grand coalition.

Two main types of rules:

- **marginalist (contributory) rules**, such as the Shapley value and the Banzhaf value.
- **egalitarian rules**, such as the equal division and the equal surplus division.

The two types can be compared axiomatically (van den Brink, 2007, Kamijo and Kongoc, Béal et al., 2012b).

The two types satify the axiom of symmetry.
Cooperative game theory aims at combining axioms to study rules that distribute the worth of the grand coalition.

Two main types of rules:

- **marginalist (contributory) rules**, such as the Shapley value and the Banzhaf value.
- **egalitarian rules**, such as the equal division and the equal surplus division.

The two types can be compared axiomatically (van den Brink, 2007, Kamijo and Kongoc, Béal *et al.*, 2012b).

The two types satisfy the axiom of **symmetry**.
Weighted rules have been introduced to take exogenous asymmetries among the players into account.

Example: Kalai and Samet (1987) study weighted Shapley values.

We analyze weighted efficient distribution of the worth of the grand coalition, called Proportional rules.

Weights are exogenously given as in Kalai and Samet.

Proportional rules are used in bankruptcy problems (Thomson, 2003).
Weighted rules have been introduced to take exogenous asymmetries among the players into account.

Example: Kalai and Samet (1987) study *weighted Shapley values*.

We analyze weighted efficient distribution of the worth of the grand coalition, called **Proportional rules**.

Weights are exogenously given as in Kalai and Samet.

Proportional rules are used in bankruptcy problems (Thomson, 2003).
Weighted rules have been introduced to take exogenous asymmetries among the players into account.

Example: Kalai and Samet (1987) study *weighted Shapley values*.

We analyze weighted efficient distribution of the worth of the grand coalition, called *Proportional rules*.

Weights are exogenously given as in Kalai and Samet.

Proportional rules are used in bankruptcy problems (Thomson, 2003).
Weighted rules have been introduced to take exogenous asymmetries among the players into account.

Example: Kalai and Samet (1987) study *weighted Shapley values*.

We analyze weighted efficient distribution of the worth of the grand coalition, called **Proportional rules**.

Weights are exogenously given as in Kalai and Samet.

Proportional rules are used in bankruptcy problems (Thomson, 2003).
Weighted rules have been introduced to take exogenous asymmetries among the players into account.

Example: Kalai and Samet (1987) study *weighted Shapley values*.

We analyze weighted efficient distribution of the worth of the grand coalition, called **Proportional rules**.

Weights are exogenously given as in Kalai and Samet.

Proportional rules are used in bankruptcy problems (Thomson, 2003).
We characterize the Proportional rules and the equal division rule by means of classical and new axioms. Two features:

1. We impose/formulate axioms exhibiting variations on the **null player** and **nullifying player** properties.

 Example: null player in a productive environment (Casajus and Huetttner, 2013).

2. We often impose an **axiom of invariance**, describing which modifications of a game preserve the payoffs recommended by a rule.

 Examples: Independence of irrelevant alternatives (Nash, 1953), Null player out property (Derks and Haller, 1999), Marginality (Young, 1985). See also (Béal et. al., 2012b).
Method

We characterize the Proportional rules and the equal division rule by means of classical and new axioms. Two features:

1. We impose/formulate axioms exhibiting variations on the null player and nullifying player properties.
 Example: null player in a productive environment (Casajus and Huettner, 2013).

2. We often impose an axiom of invariance, describing which modifications of a game preserve the payoffs recommended by a rule.
 Examples: Independence of irrelevant alternatives (Nash, 1953), Null player out property (Derks and Haller, 1999), Marginality (Young, 1985). See also (Béal et. al., 2012b).
We characterize the Proportional rules and the equal division rule by means of classical and new axioms. Two features:

1. We impose/formulate axioms exhibiting variations on the null player and nullifying player properties.

 Example: null player in a productive environment (Casajus and Huettner, 2013).

2. We often impose an axiom of invariance, describing which modifications of a game preserve the payoffs recommended by a rule.

 Examples: Independence of irrelevant alternatives (Nash, 1953), Null player out property (Derks and Haller, 1999), Marginality (Young, 1985). See also (Béal et al., 2012b).
We characterize the Proportional rules and the equal division rule by means of classical and new axioms. Two features:

1. We impose/formulate axioms exhibiting variations on the **null player** and **nullifying player** properties.
 Example: null player in a productive environment (Casajus and Huettner, 2013).

2. We often impose an **axiom of invariance**, describing which modifications of a game preserve the payoffs recommended by a rule.
 Examples: Independence of irrelevant alternatives (Nash, 1953), Null player out property (Derks and Haller, 1999), Marginality (Young, 1985). See also (Béal et. al., 2012b).
Definitions

\(N = \{1, \ldots, n\} \) is a **fixed and finite player set**.

\(v \in \{f : 2^N \rightarrow \mathbb{R}, f(\emptyset) = 0\} \) is a **(TU-)game** on \(N \).

The **dual game** of \(v \) is the game \(v^D \) such that

\[v^D(S) = v(N) - v(N \setminus S), \quad \forall S \in 2^N. \]

In game \(v \), a player \(i \in N \) is called

- **null** if \(v(S) = v(S \setminus i) \) for all \(S \ni i \).
- **nullifying** if \(v(S) = 0 \) for all \(S \ni i \).
- **positive** if \(v(S) \geq 0 \) for all \(S \ni i \).

Two players \(i, j \in N \) are **symmetric** in \(v \) if: \(v(S \cup i) = v(S \cup j) \), \(\forall S \subseteq N \setminus \{i, j\} \).
Definitions

$N = \{1, \ldots, n\}$ is a **fixed and finite player set**.

$v \in \{ f : 2^N \rightarrow \mathbb{R}, \ f(\emptyset) = 0 \}$ is a (TU-)game on N.

The **dual game** of v is the game v^D such that

$$v^D(S) = v(N) - v(N \setminus S), \ \forall S \in 2^N.$$

In game v, a player $i \in N$ is called

- **null** if $v(S) = v(S \setminus i)$ for all $S \ni i$.
- **nullifying** if $v(S) = 0$ for all $S \ni i$.
- **positive** if $v(S) \geq 0$ for all $S \ni i$.

Two players $i, j \in N$ are **symmetric** in v if: $v(S \cup i) = v(S \cup j)$, $\forall S \subseteq N \setminus \{i, j\}$.
$N = \{1, \ldots, n\}$ is a **fixed and finite player set**.

$v \in \{ f : 2^N \rightarrow \mathbb{R}, f(\emptyset) = 0 \}$ is a (**TU-**)game on N.

The **dual game** of v is the game v^D such that $v^D(S) = v(N) - v(N \setminus S)$, $\forall S \in 2^N$.

In game v, a player $i \in N$ is called

- **null** if $v(S) = v(S \setminus i)$ for all $S \ni i$.
- **nullifying** if $v(S) = 0$ for all $S \ni i$.
- **positive** if $v(S) \geq 0$ for all $S \ni i$.

Two players $i, j \in N$ are **symmetric** in v if: $v(S \cup i) = v(S \cup j)$, $\forall S \subseteq N \setminus \{i, j\}$.
Definitions

\(N = \{1, \ldots, n\} \) is a **fixed and finite player set**.

\(v \in \{ f : 2^N \to \mathbb{R}, f(\emptyset) = 0 \} \) is a **(TU-)game** on \(N \).

The **dual game** of \(v \) is the game \(v^D \) such that
\[
 v^D(S) = v(N) - v(N \setminus S), \quad \forall S \in 2^N.
\]

In game \(v \), a player \(i \in N \) is called
- **null** if \(v(S) = v(S \setminus i) \) for all \(S \ni i \).
- **nullifying** if \(v(S) = 0 \) for all \(S \ni i \).
- **positive** if \(v(S) \geq 0 \) for all \(S \ni i \).

Two players \(i, j \in N \) are **symmetric** in \(v \) if: \(v(S \cup i) = v(S \cup j), \) \(\forall S \subseteq N \setminus \{i, j\} \).
Definitions

\[N = \{1, \ldots, n\} \text{ is a fixed and finite player set.} \]

\[v \in \{ f : 2^N \rightarrow \mathbb{R}, f(\emptyset) = 0 \} \text{ is a (TU-)game on } N. \]

The dual game of \(v \) is the game \(v^D \) such that
\[v^D(S) = v(N) - v(N \setminus S), \forall S \in 2^N. \]

In game \(v \), a player \(i \in N \) is called
- **null** if \(v(S) = v(S \setminus i) \) for all \(S \ni i \).
- **nullifying** if \(v(S) = 0 \) for all \(S \ni i \).
- **positive** if \(v(S) \geq 0 \) for all \(S \ni i \).

Two players \(i, j \in N \) are symmetric in \(v \) if: \(v(S \cup i) = v(S \cup j), \forall S \subseteq N \setminus \{i, j\} \).
$N = \{1, \ldots, n\}$ is a \textbf{fixed and finite player set}.

$v \in \{f : 2^N \rightarrow \mathbb{R}, f(\emptyset) = 0\}$ is a \textbf{(TU-)game} on N.

The \textbf{dual game} of v is the game v^D such that
\[
v^D(S) = v(N) - v(N \setminus S), \quad \forall S \in 2^N.
\]

In game v, a player $i \in N$ is called
- \textbf{null} if $v(S) = v(S \setminus i)$ for all $S \ni i$.
- \textbf{nullifying} if $v(S) = 0$ for all $S \ni i$.
- \textbf{positive} if $v(S) \geq 0$ for all $S \ni i$.

Two players $i, j \in N$ are \textbf{symmetric} in v if:
\[
v(S \cup i) = v(S \cup j), \quad \forall S \subseteq N \setminus \{i, j\}.
\]
Definitions

\[N = \{1, \ldots, n\} \text{ is a fixed and finite player set.} \]

\[v \in \{ f : 2^N \rightarrow \mathbb{R}, f(\emptyset) = 0 \} \text{ is a (TU-)game on } N. \]

The dual game of \(v \) is the game \(v^D \) such that

\[v^D(S) = v(N) - v(N \setminus S), \quad \forall S \in 2^N. \]

In game \(v \), a player \(i \in N \) is called

- **null** if \(v(S) = v(S \setminus i) \) for all \(S \ni i \).
- **nullifying** if \(v(S) = 0 \) for all \(S \ni i \).
- **positive** if \(v(S) \geq 0 \) for all \(S \ni i \).

Two players \(i, j \in N \) are symmetric in \(v \) if: \(v(S \cup i) = v(S \cup j), \quad \forall S \subseteq N \setminus \{i, j\}. \)
Definitions

$N = \{1, \ldots, n\}$ is a fixed and finite player set.

$v \in \{ f : 2^N \rightarrow \mathbb{R}, f(\emptyset) = 0 \}$ is a (TU-)game on N.

The dual game of v is the game v^D such that $v^D(S) = v(N) - v(N \setminus S)$, $\forall S \in 2^N$.

In game v, a player $i \in N$ is called

- **null** if $v(S) = v(S \setminus i)$ for all $S \ni i$.
- **nullifying** if $v(S) = 0$ for all $S \ni i$.
- **positive** if $v(S) \geq 0$ for all $S \ni i$.

Two players $i, j \in N$ are symmetric in v if: $v(S \cup i) = v(S \cup j)$, $\forall S \subseteq N \setminus \{i, j\}$.
A rule is a function φ that assigns a payoff vector $\varphi(v)$ to all v.

The proportional rules (abbreviated P-rules) are given by

$$\forall v, \forall i \in N, \quad P_i(v) = \omega_i \cdot v(N).$$

for some (exogenously given) constants $\omega_i \in \mathbb{R}$, $\sum_{i \in N} \omega_i = 1$.

The P^0-rules are the P-rules such that $\omega_i \geq 0$, $\forall i \in N$.

The equal division rule ED is the P-rule such that $\omega_i = 1/n$, $\forall i \in N$, i.e.

$$\forall v, \forall i \in N, \quad ED_i(v) = \frac{v(N)}{n}.$$
Some rules

A rule is a function φ that assigns a payoff vector $\varphi(v)$ to all v.

The proportional rules (abbreviated P-rules) are given by

$$\forall v, \forall i \in N, \quad P_i(v) = \omega_i \cdot v(N).$$

for some (exogenously given) constants $\omega_i \in \mathbb{R}, \sum_{i \in N} \omega_i = 1$.

The P^0-rules are the P-rules such that $\omega_i \geq 0, \forall i \in N$.

The equal division rule ED is the P-rule such that $\omega_i = 1/n, \forall i \in N$, i.e.

$$\forall v, \forall i \in N, \quad ED_i(v) = \frac{v(N)}{n}.$$
Some rules

A rule is a function \(\varphi \) that assigns a payoff vector \(\varphi(v) \) to all \(v \).

The proportional rules (abbreviated \(P \)-rules) are given by

\[
\forall v, \forall i \in N, \quad P_i(v) = \omega_i \cdot v(N).
\]

for some (exogenously given) constants \(\omega_i \in \mathbb{R}, \sum_{i \in N} \omega_i = 1 \).

The \(P^0 \)-rules are the \(P \)-rules such that \(\omega_i \geq 0, \forall i \in N \).

The equal division rule \(ED \) is the \(P \)-rule such that \(\omega_i = 1/n, \forall i \in N \), i.e.

\[
\forall v, \forall i \in N, \quad ED_i(v) = \frac{v(N)}{n}.
\]
A **rule** is a function φ that assigns a payoff vector $\varphi(v)$ to all v.

The **proportional rules** (abbreviated P-rules) are given by

$$\forall v, \forall i \in N, \quad P_i(v) = \omega_i \cdot v(N).$$

for some (exogenously given) constants $\omega_i \in \mathbb{R}, \sum_{i \in N} \omega_i = 1$.

The P^0-rules are the P-rules such that $\omega_i \geq 0, \forall i \in N$.

The **equal division rule** ED is the P-rule such that $\omega_i = 1/n, \forall i \in N$, *i.e.*

$$\forall v, \forall i \in N, \quad ED_i(v) = \frac{v(N)}{n}.$$
A rule φ satisfies

- **Efficiency** if, $\forall v, \sum_{i \in N} \varphi_i(v) = v(N)$.

- **Symmetry** if, $\forall v, \forall i, j \in N$ symmetric, $\varphi_i(v) = \varphi_j(v)$.

- **Null player** if, $\forall v, \forall i \in N$ null, $\varphi_i(v) = 0$.

- **Nullifying player** if, $\forall v, \forall i \in N$ nullifying, $\varphi_i(v) = 0$.

- **Additivity** if, $\forall v, w, \varphi(v + w) = \varphi(v) + \varphi(w)$.

- **Self-duality** if, $\forall v, \varphi(v) = \varphi(v^D)$.

A rule φ satisfies

- **Efficiency** if, $\forall v, \sum_{i \in N} \varphi_i(v) = v(N)$.

- **Symmetry** if, $\forall v, \forall i, j \in N$ symmetric, $\varphi_i(v) = \varphi_j(v)$.

- **Null player** if, $\forall v, \forall i \in N$ null, $\varphi_i(v) = 0$.

- **Nullifying player** if, $\forall v, \forall i \in N$ nullifying, $\varphi_i(v) = 0$.

- **Additivity** if, $\forall v, w$, $\varphi(v + w) = \varphi(v) + \varphi(w)$.

- **Self-duality** if, $\forall v$, $\varphi(v) = \varphi(v^D)$.
A rule φ satisfies

- **Efficiency** if, $\forall v, \sum_{i \in N} \varphi_i(v) = v(N)$.

- **Symmetry** if, $\forall v, \forall i, j \in N$ symmetric, $\varphi_i(v) = \varphi_j(v)$.

- **Null player** if, $\forall v, \forall i \in N$ null, $\varphi_i(v) = 0$.

- **Nullifying player** if, $\forall v, \forall i \in N$ nullifying, $\varphi_i(v) = 0$.

- **Additivity** if, $\forall v, w$, $\varphi(v + w) = \varphi(v) + \varphi(w)$.

- **Self-duality** if, $\forall v$, $\varphi(v) = \varphi(v^D)$.

A rule φ satisfies

- **Efficiency** if, $\forall v, \sum_{i \in N} \varphi_i(v) = v(N)$.

- **Symmetry** if, $\forall v, \forall i, j \in N$ symmetric, $\varphi_i(v) = \varphi_j(v)$.

- **Null player** if, $\forall v, \forall i \in N$ null, $\varphi_i(v) = 0$.

- **Nullifying player** if, $\forall v, \forall i \in N$ nullifying, $\varphi_i(v) = 0$.

- **Additivity** if, $\forall v, w$, $\varphi(v + w) = \varphi(v) + \varphi(w)$.

- **Self-duality** if, $\forall v$, $\varphi(v) = \varphi(v^D)$.

A rule φ satisfies

- **Efficiency** if, $\forall v, \sum_{i \in N} \varphi_i(v) = v(N)$.
- **Symmetry** if, $\forall v, \forall i, j \in N$ symmetric, $\varphi_i(v) = \varphi_j(v)$.
- **Null player** if, $\forall v, \forall i \in N$ null, $\varphi_i(v) = 0$.
- **Nullifying player** if, $\forall v, \forall i \in N$ nullifying, $\varphi_i(v) = 0$.
- **Additivity** if, $\forall v, w, \varphi(v + w) = \varphi(v) + \varphi(w)$.
- **Self-duality** if, $\forall v, \varphi(v) = \varphi(v^D)$.
A rule \(\varphi \) satisfies

- **Efficiency** if, \(\forall v, \sum_{i \in N} \varphi_i(v) = v(N) \).

- **Symmetry** if, \(\forall v, \forall i, j \in N \) symmetric, \(\varphi_i(v) = \varphi_j(v) \).

- **Null player** if, \(\forall v, \forall i \in N \) null, \(\varphi_i(v) = 0 \).

- **Nullifying player** if, \(\forall v, \forall i \in N \) nullifying, \(\varphi_i(v) = 0 \).

- **Additivity** if, \(\forall v, w, \varphi(v + w) = \varphi(v) + \varphi(w) \).

- **Self-duality** if, \(\forall v, \varphi(v) = \varphi(v^D) \).
A rule φ satisfies

- **Efficiency** if, $\forall v, \sum_{i \in N} \varphi_i(v) = v(N)$.

- **Symmetry** if, $\forall v, \forall i, j \in N$ symmetric, $\varphi_i(v) = \varphi_j(v)$.

- **Null player** if, $\forall v, \forall i \in N$ null, $\varphi_i(v) = 0$.

- **Nullifying player** if, $\forall v, \forall i \in N$ nullifying, $\varphi_i(v) = 0$.

- **Additivity** if, $\forall v, w$, $\varphi(v + w) = \varphi(v) + \varphi(w)$.

- **Self-duality** if, $\forall v$, $\varphi(v) = \varphi(v^D)$.
Variations on the null player property

- **Null player in a productive environment:**
 \[\forall v \text{ with } v(N) \geq 0, \forall i \in N \text{ null, } \varphi_i(v) \geq 0. \]

Introduced by Casajus and Huetttner (2013).

For a game \(v \) and a player \(i \in N \), the game in which \(i \) is nullified is the game \(v^N_i \) given by

\[\forall S \in 2^N, \quad v^N_i(S) = v(S \setminus \{i\}). \]

- **Nullified player:**
 \[\forall v, \forall i, j \in N, \text{ if } \varphi_i(v) \geq \varphi_i(v^N_i), \text{ then } \varphi_j(v) \geq \varphi_j(v^N_i). \]

Same flavor as population solidarity in Chun and Park (2013) and solidarity principle in Thomson (2012).
Variations on the null player property

- Null player in a productive environment:
 \(\forall v \text{ with } v(N) \geq 0, \forall i \in N \text{ null, } \varphi_i(v) \geq 0.\)

Introduced by Casajus and Huettner (2013).

For a game \(v\) and a player \(i \in N\), the game in which \(i\) is nullified is the game \(v_{Ni}\) given by

\[\forall S \in 2^N, \quad v_{Ni}(S) = v(S\setminus\{i\}).\]

- Nullified player:
 \(\forall v, \forall i, j \in N, \text{ if } \varphi_i(v) \geq \varphi_i(v_{Ni}), \text{ then } \varphi_j(v) \geq \varphi_j(v_{Ni}).\)

Same flavor as population solidarity in Chun and Park (2013) and solidarity principle in Thomson (2012).
null player in a productive environment:
\[\forall v \text{ with } v(N) \geq 0, \forall i \in N \text{ null, } \varphi_i(v) \geq 0. \]

Introduced by Casajus and Huettner (2013).

For a game \(v \) and a player \(i \in N \), the game in which \(i \) is nullified is the game \(v^{N_i} \) given by

\[\forall S \in 2^N, \quad v^{N_i}(S) = v(S \setminus \{i\}). \]

nullified player:
\[\forall v, \forall i, j \in N, \text{ if } \varphi_i(v) \geq \varphi_i(v^{N_i}), \text{ then } \varphi_j(v) \geq \varphi_j(v^{N_i}). \]

Same flavor as population solidarity in Chun and Park (2013) and solidarity principle in Thomson (2012).
Variations on the null player property

- **Null player in a productive environment:**
 \[\forall v \text{ with } v(N) \geq 0, \forall i \in N \text{ null, } \varphi_i(v) \geq 0. \]

Introduced by Casajus and Huettner (2013).

For a game \(v \) and a player \(i \in N \), the game in which \(i \) is nullified is the game \(v^{Ni} \) given by

\[\forall S \in 2^N, \quad v^{Ni}(S) = v(S \setminus \{i\}). \]

- **Nullified player:**
 \[\forall v, \forall i, j \in N, \text{ if } \varphi_i(v) \geq \varphi_i(v^{Ni}), \text{ then } \varphi_j(v) \geq \varphi_j(v^{Ni}). \]

Same flavor as population solidarity in Chun and Park (2013) and solidarity principle in Thomson (2012).
Variation on the nullifying player property

- **Positive player:**
 \[\forall v, \forall i \in N \text{ positive, } \varphi_i(v) \geq 0. \]

 \[\forall a \in \mathbb{R}, \forall b \in \mathbb{R}^N, \text{ the game } (a \cdot v + b) \text{ is given by } \]
 \[\forall S \in 2^N, \quad (a \cdot v + b)(S) = a \cdot v(S) + \sum_{i \in S} b_i. \]

- **Weak covariance:**
 \[\forall i, j \in N, \text{ if } b_i = b_j, \text{ then } \varphi(a \cdot v + b) = a \cdot \varphi(v) + b. \]
Positive player:
\[\forall v, \forall i \in N \text{ positive}, \varphi_i(v) \geq 0. \]

\[\forall a \in \mathbb{R}, \forall b \in \mathbb{R}^N, \text{ the game } (a \cdot v + b) \text{ is given by} \]
\[\forall S \in 2^N, \quad (a \cdot v + b)(S) = a \cdot v(S) + \sum_{i \in S} b_i. \]

Weak covariance:
\[\forall i, j \in N, \text{ if } b_i = b_j, \text{ then } \varphi(a \cdot v + b) = a \cdot \varphi(v) + b. \]
Variation on the nullifying player property

- **Positive player:**
 \[
 \forall v, \forall i \in N \text{ positive}, \varphi_i(v) \geq 0.
 \]

- \forall a \in \mathbb{R}, \forall b \in \mathbb{R}^N, the game \((a \cdot v + b)\) is given by
 \[
 \forall S \in 2^N, \quad (a \cdot v + b)(S) = a \cdot v(S) + \sum_{i \in S} b_i.
 \]

- **Weak covariance:**
 \[
 \forall i, j \in N, \text{ if } b_i = b_j, \text{ then } \varphi(a \cdot v + b) = a \cdot \varphi(v) + b.
 \]
Addition invariance with respect to bi-partitions

∀v, ∀S \notin \{\emptyset, N\}, ∀c \in \mathbb{R}, the game v_{S,c} is given by

\forall T \in 2^N, \quad v_{S,c}(T) = \begin{cases} v(T) + c & \text{if } T \in \{S, N\setminus S\}, \\ v(T) & \text{otherwise.} \end{cases}

- Addition invariance with respect to bi-partitions:
\forall v, ∀S \notin \{\emptyset, N\}, ∀c \in \mathbb{R}, \varphi(v_{S,c}) = \varphi(v).

Bi-partitions appear in the Shapley and Banzhaf values.

S and N\setminus S are somehow competing against each other in a two-entity bargaining.

v(S) and v(N\setminus S) can be seen as their bargaining powers.
∀v, ∀S \not\in \{\emptyset, N\}, ∀c \in \mathbb{R}, the game v_{S,c} is given by

\[v_{S,c}(T) = \begin{cases} v(T) + c & \text{if } T \in \{S, N \setminus S\}, \\ v(T) & \text{otherwise.} \end{cases} \]

- Addition invariance with respect to bi-partitions:
 ∀v, ∀S \not\in \{\emptyset, N\}, ∀c \in \mathbb{R}, \varphi(v_{S,c}) = \varphi(v).

Bi-partitions appear in the Shapley and Banzhaf values.

S and N \setminus S are somehow competing against each other in a two-entity bargaining.

v(S) and v(N \setminus S) can be seen as their bargaining powers.
Addition invariance with respect to bi-partitions:

∀v, ∀S \not\in \{\emptyset, N\}, ∀c \in \mathbb{R}, \phi(v_{S,c}) = \phi(v).

Bi-partitions appear in the Shapley and Banzhaf values.

S and N\setminus S are somehow competing against each other in a two-entity bargaining.

v(S) and v(N\setminus S) can be seen as their bargaining powers.
∀v, ∀S \not\in \{\emptyset, N\}, ∀c \in \mathbb{R}, the game v_{S,c} is given by

$$\forall T \in 2^N, \quad v_{S,c}(T) = \begin{cases} v(T) + c & \text{if } T \in \{S, N\setminus S\}, \\ v(T) & \text{otherwise.} \end{cases}$$

- **Addition invariance with respect to bi-partitions:**
 $$\forall v, \forall S \not\in \{\emptyset, N\}, \forall c \in \mathbb{R}, \varphi(v_{S,c}) = \varphi(v).$$

Bi-partitions appear in the Shapley and Banzhaf values.

S and N\setminus S are somehow competing against each other in a two-entity bargaining.

v(S) and v(N\setminus S) can be seen as their bargaining powers.
Addition invariance with respect to bi-partitions

∀v, ∀S \notin \{\emptyset, N\}, ∀c \in \mathbb{R}, the game v_{S,c} is given by

\forall T \in 2^N, \quad v_{S,c}(T) = \begin{cases}
 v(T) + c & \text{if } T \in \{S, N\setminus S\}, \\
 v(T) & \text{otherwise.}
\end{cases}

- Addition invariance with respect to bi-partitions:
 \forall v, \forall S \notin \{\emptyset, N\}, \forall c \in \mathbb{R}, \phi(v_{S,c}) = \phi(v).

Bi-partitions appear in the Shapley and Banzhaf values.

S and N\setminus S are somehow competing against each other in a two-entity bargaining.

v(S) and v(N\setminus S) can be seen as their bargaining powers.
This aspect is highlighted for the Shapley value by Eisenman (1967), Rothblum (1988), Evans (1996) and Béal et al. (2012a).

Since in $\nu_{S,c}$, the worths of S and $N \setminus S$ are reevaluated by the same amount, *ceteris paribus*, then the bargaining powers of S and $N \setminus S$ are affected similarly.

Satisfied by the Shapley value, Banzhaf value, equal division rule ...
Addition invariance with respect to bi-partitions

This aspect is highlighted for the Shapley value by Eisenman (1967), Rothblum (1988), Evans (1996) and Béal et al. (2012a).

Since in $\nu_{S,c}$, the worths of S and $N\setminus S$ are reevaluated by the same amount, *ceteris paribus*, then the bargaining powers of S and $N\setminus S$ are affected similarly.

Satisfied by the Shapley value, Banzhaf value, equal division rule...

Proposition

The combination of self-duality and additivity implies addition invariance with respect to bi-partitions. Addition invariance with respect to bi-partitions implies self-duality.
This aspect is highlighted for the Shapley value by Eisenman (1967), Rothblum (1988), Evans (1996) and Béal et al. (2012a).

Since in $v_{S,c}$, the worths of S and $N\setminus S$ are reevaluated by the same amount, ceteris paribus, then the bargaining powers of S and $N\setminus S$ are affected similarly.

Satisfied by the Shapley value, Banzhaf value, equal division rule ...

Proposition

The combination of self-duality and additivity implies addition invariance with respect to bi-partitions.

Addition invariance with respect to bi-partitions implies self-duality.
This aspect is highlighted for the Shapley value by Eisenman (1967), Rothblum (1988), Evans (1996) and Béal et al. (2012a).

Since in \(v_{S,c} \), the worths of \(S \) and \(N\setminus S \) are reevaluated by the same amount, *ceteris paribus*, then the bargaining powers of \(S \) and \(N\setminus S \) are affected similarly.

Satisfied by the Shapley value, Banzhaf value, equal division rule ...

Proposition

The combination of self-duality and additivity implies addition invariance with respect to bi-partitions.

Addition invariance with respect to bi-partitions implies self-duality.
This aspect is highlighted for the Shapley value by Eisenman (1967), Rothblum (1988), Evans (1996) and Béal et al. (2012a).

Since in $v_{S,c}$, the worths of S and $N\setminus S$ are reevaluated by the same amount, *ceteris paribus*, then the bargaining powers of S and $N\setminus S$ are affected similarly.

Satisfied by the Shapley value, Banzhaf value, equal division rule ...

Proposition

The combination of self-duality and additivity implies addition invariance with respect to bi-partitions.

Addition invariance with respect to bi-partitions implies self-duality.
Characterizations

Efficiency
Symmetry
Null player
Nullifying player
Additivity
Add. Inv. w.r.t. bi-partitions
Null player in productive env.
Positive player
Nullified player
Weak covariance
Characterizations

- Efficiency
- Symmetry
- Null player
- Nullifying player
- Additivity
- Add. Inv. w.r.t. bi-partitions
- Null player in productive env.
- Positive player
- Nullified player
- Weak covariance

Punctual axioms

(Singh, 1962)
(Not P rules)
(P rules)
(Van den Brink, 2007)
(Béal et al., 2013)
Characterizations

Efficiency
Symmetry
Null player
Nullifying player

Additivity
Add. Inv. w.r.t. bi-partitions
Null player in productive env.
Positive player
Nullified player
Weak covariance

Relational axioms
Characterizations

- Efficiency
- Symmetry
- Null player
 - Nullifying player
- Additivity
 - Add. Inv. w.r.t. bi-partitions
 - Null player in productive env.
 - Positive player
 - Nullified player
 - Weak covariance

Shapley value (Shubik, 1962)

Equal division rule

Not P0-rules

P0-rules

P-rules (van den Brink, 2007)

(Béal et al., 2013)
Characterizations

Efficiency

Symmetry

Null player

Nullifying player

Additivity

Add. Inv. w.r.t. bi-partitions

Null player in productive env.

Positive player

Nullified player

Weak covariance

Equal division rule
(van den Brink, 2007)
Characterizations

- Efficiency
- Symmetry
- Null player
- Nullifying player
- Additivity
 - Add. Inv. w.r.t. bi-partitions
 - Null player in productive env.
- Positive player
- Nullified player
- Weak covariance

???
- Not P^0-rules
- Not P-rules

(Shubik, 1962)
(van den Brink, 2007)
(Béal et al., 2013)
Characterizations

Efficiency
Symmetry
Null player
Nullifying player
Additivity
Add. Inv. w.r.t. bi-partitions
Null player in productive env.
Positive player
Nullified player
Weak covariance

P-rules
(Béal et al., 2013)
Characterizations

- Efficiency
- Symmetry
- Null player
- Nullifying player
- Additivity
- Add. Inv. w.r.t. bi-partitions
- Null player in productive env.
- Positive player
- Nullified player
- Weak covariance

P^0-rules
(Béal et al., 2013)
Characterizations

- Efficiency
 - Symmetry
 - Null player
 - Nullifying player
- Additivity
 - Add. Inv. w.r.t. bi-partitions
 - Null player in productive env.
 - Positive player
 - Nullified player
 - Weak covariance

\(P^0 \)-rules
(Béal et al., 2013)
Characterizations

Efficiency
Symmetry
Null player
Nullifying player
Additivity
Add. Inv. w.r.t. bi-partitions
Null player in productive env.
Positive player
Nullified player
Weak covariance

Equal division rule (Béal et al., 2013)
Characterizations

Efficiency
Symmetry
Null player
Nullifying player

Additivity
Add. Inv. w.r.t. bi-partitions
Null player in productive env.

Positive player
Nullified player
Weak covariance

P^0-rules
(Béal et al., 2013)
Characterizations

- Efficiency
- Symmetry
- Null player
- Nullifying player
- Additivity
 - Add. Inv. w.r.t. bi-partitions
 - Null player in productive env.
- Positive player
 - Nullified player
 - Weak covariance

Equal division rule
(Béal et al., 2013)
Characterizations

Efficiency
Symmetry
Null player
Nullifying player
Additivity
Add. Inv. w.r.t. bi-partitions
Null player in productive env.
Positive player
Nullified player
Weak covariance

Equal division rule (Béal et al., 2013)

(Singh, 1962)
Characterizations

Efficiency
Symmetry
Null player
Nullifying player
Additivity
Add. Inv. w.r.t. bi-partitions
Null player in productive env.
Positive player
Nullified player
Weak covariance

Equal division rule (Béal et al., 2013)
To be done

Work still in progress and incomplete at the moment ...

Determination of the exact logical relations between the axioms (implications, impossibility results ...)

Validation of the results on sub-classes of games (monotonic games ...)

Investigation of other egalitarian-like rules (equal surplus division ...)

July 10, 2013
To be done

Work still in progress and incomplete at the moment ...

Determination of the exact logical relations between the axioms (implications, impossibility results ...)

Validation of the results on sub-classes of games (monotonic games ...)

Investigation of other egalitarian-like rules (equal surplus division ...)
Work still in progress and incomplete at the moment ...

Determination of the exact logical relations between the axioms (implications, impossibility results ...)

Validation of the results on sub-classes of games (monotonic games ...)

Investigation of other egalitarian-like rules (equal surplus division ...)

To be done
To be done

Work still in progress and incomplete at the moment ...

Determination of the exact logical relations between the axioms (implications, impossibility results ...)

Validation of the results on sub-classes of games (monotonic games ...)

Investigation of other egalitarian-like rules (equal surplus division ...)

July 10, 2013