An axiomatization of the iterated h-index
and applications to sport rankings

Sylvain Béal1, Sylvain Ferrières1, Eric Rémila2, Philippe Solal2

1 CRESE EA3190, Univ. Bourgogne Franche-Comté, F25000 Besançon, France
2 GATE Lyon Saint-Etienne UMR5824, Université de Saint-Etienne, France

ANR Dynamite: https://sites.google.com/site/anrdynamite/home

November 8th, 2016
Motivation

Recent and increasing need to compare/evaluate/rank scholars, research centers, scientific institutions, countries, on the basis of their scientific production.

Few examples/tools:

- Shanghai ranking;
- Web of Science;
- Google Scholar;
- Impact Factor;
- French CNRS ranking for economic journals;
- RePEc;
- h-Index (Hirsch, PNAS, 2005).
Motivation

Recent and increasing need to compare/evaluate/rank scholars, research centers, scientific institutions, countries, on the basis of their scientific production.

Few examples/tools:

- Shanghai ranking;
- Web of Science;
- Google Scholar;
- Impact factor;
- French CNRS ranking for economic journals;
- RePEc;
- h-index (Hirsch, PNAS, 2005).
Motivation

Recent and increasing need to compare/evaluate/rank scholars, research centers, scientific institutions, countries, on the basis of their scientific production.

Few examples/tools:

- Shanghai ranking;
- Web of Science;
- Google Scholar;
- Impact factor;
- French CNRS ranking for economic journals;
- RePEc;
- h-index (Hirsch, PNAS, 2005).
Motivation

Recent and increasing need to compare/evaluate/rank scholars, research centers, scientific institutions, countries, on the basis of their scientific production.

Few examples/tools:

- Shanghai ranking;
- Web of Science;
- Google Scholar;
- Impact factor;
- French CNRS ranking for economic journals;
- RePEc;
- h-index (Hirsch, PNAS, 2005).
Recent and increasing need to compare/evaluate/rank scholars, research centers, scientific institutions, countries, on the basis of their scientific production.

Few examples/tools:

- Shanghai ranking;
- Web of Science;
- Google Scholar;
- Impact factor;
- French CNRS ranking for economic journals;
- RePEc;
- h-index (Hirsch, PNAS, 2005).
Motivation

Recent and increasing need to compare/evaluate/rank scholars, research centers, scientific institutions, countries, on the basis of their scientific production.

Few examples/tools:
- Shanghai ranking;
- Web of Science;
- Google Scholar;
- Impact factor;
- French CNRS ranking for economic journals;
- RePEc;
- h-index (Hirsch, PNAS, 2005).
Motivation

Recent and increasing need to compare/evaluate/rank scholars, research centers, scientific institutions, countries, on the basis of their scientific production.

Few examples/tools:

- Shanghai ranking;
- Web of Science;
- Google Scholar;
- Impact factor;
- French CNRS ranking for economic journals;
- RePEc;
- \(h \)-index (Hirsch, PNAS, 2005).
Recent and increasing need to compare/evaluate/rank scholars, research centers, scientific institutions, countries, on the basis of their scientific production.

Few examples/tools:

- Shanghai ranking;
- Web of Science;
- Google Scholar;
- Impact factor;
- French CNRS ranking for economic journals;
- RePEc;
- h-index (Hirsch, PNAS, 2005).
Related literature

- Marchand, T. and Bouyssou, D. + many more in *Scientometrics* and *Journal of Informetrics*.
Related literature

- Marchand, T. and Bouyssou, D. + many more in *Scientometrics* and *Journal of Informetrics.*
Related literature

- Marchand, T. and Bouyssou, D. + many more in *Scientometrics* and *Journal of Informetrics*.
Related literature

- Marchand, T. and Bouyssou, D. + many more in *Scientometrics* and *Journal of Informetrics*.
Related literature

- Marchand, T. and Bouyssou, D. + many more in *Scientometrics* and *Journal of Informetrics*.

Béal, Ferrières, Rémi, Solal 10th seminar day – OSGAD, November 8th, 2016

Marchand, T. and Bouyssou, D. + many more in *Scientometrics* and *Journal of Informetrics*.
Related literature

- Marchand, T. and Bouyssou, D. + many more in *Scientometrics* and *Journal of Informetrics.*
Objectives/Contributions:

- Presentation of the h-index ... and some drawbacks;
- Presentation of a variant which removes one drawback;
- Presentation of an axiomatic characterization;
- Application to sport rankings.
Objectives/Contributions:

- Presentation of the h-index ... and some drawbacks;
- Presentation of a variant which removes one drawback;
- Presentation of an axiomatic characterization;
- Application to sport rankings.
Objectives/Contributions:

- Presentation of the h-index ... and some drawbacks;
- Presentation of a **variant** which removes one drawback;
- Presentation of an **axiomatic characterization**;
- Application to sport rankings.
Objectives/Contributions:

- Presentation of the h-index ... and some drawbacks;
- Presentation of a variant which removes one drawback;
- Presentation of an axiomatic characterization;
- Application to sport rankings.
Objectives/Contributions:

- Presentation of the h-index ... and some drawbacks;
- Presentation of a **variant** which removes one drawback;
- Presentation of an **axiomatic characterization**;
- **Application** to sport rankings.
The scientific production of a scholar is summarized by an ordered list of numbers $x = (x_1, x_2, \ldots, x_n)$ such that

- n is the number of publications of the scholar;
- $x_k, \ k = 1, \ldots, n$, is the number of publications in which publication k is cited, i.e. the number of citations of publication k;
- $x_1 \geq x_2 \geq \cdots \geq x_n$, i.e. publications are listed according to their number of citations in decreasing order.

Example: $x = (9, 7, 7, 2, 0)$ means that the scholar has 5 publications, and that the 2nd and 3rd most cited publications have been cited 7 times each.
Definitions

The scientific production of a scholar is summarized by an ordered list of numbers \(x = (x_1, x_2, \ldots, x_n) \) such that

- \(n \) is the **number of publications** of the scholar;
- \(x_k, \ k = 1, \ldots, n, \) is the number of publications in which publication \(k \) is cited, i.e. the **number of citations** of publication \(k \);
- \(x_1 \geq x_2 \geq \cdots \geq x_n \), i.e. publications are listed according to their number of citations in **decreasing order**.

Example: \(x = (9, 7, 7, 2, 0) \) means that the scholar has 5 publications, and that the 2nd and 3rd most cited publications have been cited 7 times each.
The scientific production of a scholar is summarized by an ordered list of numbers $x = (x_1, x_2, \ldots, x_n)$ such that

- n is the number of publications of the scholar;
- x_k, $k = 1, \ldots, n$, is the number of publications in which publication k is cited, i.e. the number of citations of publication k;
- $x_1 \geq x_2 \geq \cdots \geq x_n$, i.e. publications are listed according to their number of citations in decreasing order.

Example: $x = (9, 7, 7, 2, 0)$ means that the scholar has 5 publications, and that the 2nd and 3rd most cited publications have been cited 7 times each.
Definitions

The scientific production of a scholar is summarized by an ordered list of numbers \(x = (x_1, x_2, \ldots, x_n) \) such that

- \(n \) is the **number of publications** of the scholar;
- \(x_k, k = 1, \ldots, n \), is the number of publications in which publication \(k \) is cited, i.e. the **number of citations** of publication \(k \);
- \(x_1 \geq x_2 \geq \cdots \geq x_n \), i.e. publications are listed according to their number of citations in **decreasing order**.

Example: \(x = (9, 7, 7, 2, 0) \) means that the scholar has 5 publications, and that the 2nd and 3rd most cited publications have been cited 7 times each.
The scientific production of a scholar is summarized by an ordered list of numbers \(x = (x_1, x_2, \ldots, x_n) \) such that

- \(n \) is the **number of publications** of the scholar;
- \(x_k, k = 1, \ldots, n \), is the number of publications in which publication \(k \) is cited, i.e. the **number of citations** of publication \(k \);
- \(x_1 \geq x_2 \geq \cdots \geq x_n \), i.e. publications are listed according to their number of citations in **decreasing order**.

Example: \(x = (9, 7, 7, 2, 0) \) means that the scholar has 5 publications, and that the 2nd and 3rd most cited publications have been cited 7 times each.
Definition of the \(h \)-index

\[
x = (9, 9, 7, 6, 6, 5, 4, 4, 2, 1, 1, 0)
\]

\[
n = 12, \ x_7 = x_8 = 4
\]
Definition of the h-index

\[x = (9, 9, 7, 6, 6, 5, 4, 4, 2, 1, 1, 0) \]

\[n = 12, \ x_7 = x_8 = 4 \]
Definition of the h-index

$x = (9, 9, 7, 6, 6, 5, 4, 4, 2, 1, 1, 0)$

$n = 12, \ x_7 = x_8 = 4$
Definition of the h-index

$x = (9, 9, 7, 6, 6, 5, 4, 4, 2, 1, 1, 0)$

$n = 12$, $x_7 = x_8 = 4$
Definition of the h-index

\[x = (9, 9, 7, 6, 6, 5, 4, 4, 2, 1, 1, 0) \]

\[n = 12, \ x_7 = x_8 = 4 \]
Definition of the h-index

The h-index is equal to the integer h if the scholar has h publications cited each at least h times, and if any of his/her other publications is cited at most h times.

Drawbacks:

- John F. Nash has won the “Nobel” prize in Economics and had a considerable influence in game theory, but his h-index is only 7;
- Self-citations bias;
- The number of citations in a scientific article vary significantly across fields (e.g., in “Molecular Biology & Genetics” compared to Economics);
- Difficulties to compare most of scholars since many of them have (not necessarily small) identical h-index. More than 300 scholars registered on REPEC have an h-index of 13. —— probably several thousands with equal h-index ≤7.
Definition of the h-index

The h-index is equal to the integer h if the scholar has h publications cited each at least h times, and if any of his/her other publications is cited at most h times.

Drawbacks:

- John F. Nash has won the “Nobel” prize in Economics and had a considerable influence in game theory, but his h-index is only 7;
- Self-citations bias;
- The number of citations in a scientific article vary significantly across fields ($\times 8$ in “Molecular Biology & Genetics” compared to Economics);
- Difficulties to compare most of scholars since many of them have (non necessarily small) identical h-index: More than 300 scholars registered on REPEC have an h-index of 13 \Rightarrow probably several thousands with equal h-index ≤ 7.
Definition of the h-index

The h-index is equal to the integer h if the scholar has h publications cited each at least h times, and if any of his/her other publications is cited at most h times.

Drawbacks:

- John F. Nash has won the “Nobel” prize in Economics and had a considerable influence in game theory, but his h-index is only 7;
- Self-citations bias;
- The number of citations in a scientific article vary significantly across fields ($\times 8$ in “Molecular Biology & Genetics” compared to Economics);
- Difficulties to compare most of scholars since many of them have (non necessarily small) identical h-index: More than 300 scholars registered on REPEC have an h-index of 13 \implies probably several thousands with equal h-index \leq 7.
Definition of the h-index

The h-index is equal to the integer h if the scholar has h publications cited each at least h times, and if any of his/her other publications is cited at most h times.

Drawbacks:

- John F. Nash has won the “Nobel” prize in Economics and had a considerable influence in game theory, but his h-index is only 7;
- Self-citations bias;
- The number of citations in a scientific article vary significantly across fields ($\times 8$ in “Molecular Biology & Genetics” compared to Economics);
- Difficulties to compare most of scholars since many of them have (non necessarily small) identical h-index: More than 300 scholars registered on REPEC have an h-index of 13 \Rightarrow probably several thousands with equal h-index ≤ 7.
Definition of the h-index

The h-index is equal to the integer h if the scholar has h publications cited each at least h times, and if any of his/her other publications is cited at most h times.

Drawbacks:

- John F. Nash has won the “Nobel” prize in Economics and had a considerable influence in game theory, but his h-index is only 7;
- Self-citations bias;
- The number of citations in a scientific article vary significantly across fields ($\times 8$ in “Molecular Biology & Genetics” compared to Economics);
- Difficulties to compare most of scholars since many of them have (non necessarily small) identical h-index: More than 300 scholars registered on REPEC have an h-index of 13 \Rightarrow probably several thousands with equal h-index ≤ 7.
Definition of the iterated h-index

The **iterated h-index** or **ih-index** is an empty set $ih(x) = \emptyset$ if $x = \emptyset$ or if $x = (0, \ldots, 0)$, and otherwise the vector

$$ih(x) = (ih_1(x), ih_2(x), \ldots, ih_q(x))$$

such that

- $ih_1(x)$ is the h-index of x,
- $ih_2(x)$ is the h-index of x without the $ih_1(x)$ most-cited publications,
- $ih_3(x)$ is the h-index of x without the $ih_1(x) + ih_2(x)$ most-cited publications,
- $ih_4(x)$ is the h-index of x without the $ih_1(x) + ih_2(x) + ih_3(x)$ most-cited publications,
- \[\vdots\]

and so on until all cited publications have been considered.
Definition of the iterated h-index

The **iterated h-index** or ih-index is an empty set $ih(x) = \emptyset$ if $x = \emptyset$ or if $x = (0, \ldots, 0)$, and otherwise the vector

$$ih(x) = (ih_1(x), ih_2(x), \ldots, ih_q(x))$$

such that

- $ih_1(x)$ is the h-index of x,
- $ih_2(x)$ is the h-index of x without the $ih_1(x)$ most-cited publications,
- $ih_3(x)$ is the h-index of x without the $ih_1(x) + ih_2(x)$ most-cited publications,
- $ih_4(x)$ is the h-index of x without the $ih_1(x) + ih_2(x) + ih_3(x)$ most-cited publications,
- ... and so on until all cited publications have been considered.
Definition of the iterated h-index

The **iterated h-index** or **ih-index** is an empty set $ih(x) = \emptyset$ if $x = \emptyset$ or if $x = (0, \ldots, 0)$, and otherwise the vector

$$ih(x) = (ih_1(x), ih_2(x), \ldots, ih_q(x))$$

such that

- $ih_1(x)$ is the h-index of x,
- $ih_2(x)$ is the h-index of x without the $ih_1(x)$ most-cited publications,
- $ih_3(x)$ is the h-index of x without the $ih_1(x) + ih_2(x)$ most-cited publications,
- $ih_4(x)$ is the h-index of x without the $ih_1(x) + ih_2(x) + ih_3(x)$ most-cited publications,
- ... and so on until all cited publications have been considered.
Definition of the iterated h-index

The **iterated h-index** or ih-index is an empty set $ih(x) = \emptyset$ if $x = \emptyset$ or if $x = (0, \ldots, 0)$, and otherwise the vector

$$ih(x) = (ih_1(x), ih_2(x), \ldots, ih_q(x))$$

such that

- $ih_1(x)$ is the h-index of x,
- $ih_2(x)$ is the h-index of x without the $ih_1(x)$ most-cited publications,
- $ih_3(x)$ is the h-index of x without the $ih_1(x) + ih_2(x)$ most-cited publications,
- $ih_4(x)$ is the h-index of x without the $ih_1(x) + ih_2(x) + ih_3(x)$ most-cited publications,
- ... and so on until all cited publications have been considered.
Definition of the iterated h-index

The **iterated h-index** or **ih-index** is an empty set $ih(x) = \emptyset$ if $x = \emptyset$ or if $x = (0, \ldots, 0)$, and otherwise the vector

$$ih(x) = (ih_1(x), ih_2(x), \ldots, ih_q(x))$$

such that

- $ih_1(x)$ is the h-index of x,
- $ih_2(x)$ is the h-index of x without the $ih_1(x)$ most-cited publications,
- $ih_3(x)$ is the h-index of x without the $ih_1(x) + ih_2(x)$ most-cited publications,
- $ih_4(x)$ is the h-index of x without the $ih_1(x) + ih_2(x) + ih_3(x)$ most-cited publications,
- ... and so on until all cited publications have been considered.
Definition of the iterated h-index

The **iterated h-index** or **ih-index** is an empty set $ih(x) = \emptyset$ if $x = \emptyset$ or if $x = (0, \ldots, 0)$, and otherwise the vector

$$ih(x) = (ih_1(x), ih_2(x), \ldots, ih_q(x))$$

such that

- $ih_1(x)$ is the h-index of x,
- $ih_2(x)$ is the h-index of x without the $ih_1(x)$ most-cited publications,
- $ih_3(x)$ is the h-index of x without the $ih_1(x) + ih_2(x)$ most-cited publications,
- $ih_4(x)$ is the h-index of x without the $ih_1(x) + ih_2(x) + ih_3(x)$ most-cited publications,
- ... and so on until all cited publications have been considered.
Definition of the ih-index

$x = (9, 9, 7, 6, 6, 5, 4, 4, 2, 1, 1, 0)$
Definition of the ih-index

$x = (9, 9, 7, 6, 6, 5, 4, 4, 2, 1, 1, 0)$
Definition of the ih-index

$x = (9, 9, 7, 6, 6, 5, 4, 4, 2, 1, 1, 0)$
Definition of the \(ih \)-index

\[x = (9, 9, 7, 6, 6, 5, 4, 4, 2, 1, 1, 0) \]

\[
\begin{align*}
\text{Citations} & \\
& x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12} \\
& \text{Publications} \\
& \text{ih}_1(x) = 5 \text{, } \text{ih}_2(x) = 3 \text{, } \text{ih}_3(x) = 1
\end{align*}
\]
Definition of the ih-index

$x = (9, 9, 7, 6, 6, 5, 4, 4, 2, 1, 1, 0)$

$ih_1(x) = 5$

$ih_2(x) = 3$

$ih_3(x) = 1$

$ih_4(x) = 1$
Definition of the ih-index

$x = (9, 9, 7, 6, 6, 5, 4, 4, 2, 1, 1, 0)$
Definition of the ih-index

$x = (9, 9, 7, 6, 6, 5, 4, 4, 2, 1, 1, 0)$

$ih(x) = (5, 3, 1, 1, 1)$
Definition of the iterated h-index

Close to the multidimensional h-index introduced in García-Pérez (2009, Scientometrics).

Two differences:

- if $x = \emptyset$ or if $x = (0, \ldots, 0)$, then the multidimensional h-index is equal to (0).
- if x contains non-cited publications, then the multidimensional h-index adds a (0) component for each such publication.
Definition of the iterated h-index

Close to the multidimensional h-index introduced in García-Pérez (2009, Scientometrics).

Two differences:

- if $x = \emptyset$ or if $x = (0, \ldots, 0)$, then the multidimensional h-index is equal to (0).
- if x contains non-cited publications, then the multidimensional h-index adds a (0) component for each such publication.
Definition of the iterated h-index

Close to the **multidimensional h-index** introduced in García-Pérez (2009, Scientometrics).

Two differences:

- if $x = \emptyset$ or if $x = (0, \ldots, 0)$, then the multidimensional h-index is equal to (0).
- if x contains non-cited publications, then the multidimensional h-index adds a (0) component for each such publication.
According to the ih-index, x is considered as more productive than y if

- $ih_1(x) > ih_1(y)$ or
- $ih_1(x) = ih_1(y)$ and $ih_2(x) > ih_2(y)$, or
- $ih_1(x) = ih_1(y)$, $ih_2(x) = ih_2(y)$ and $ih_3(x) > ih_3(y)$,
- ... or if all comparable components are identical and $ih(x)$ is longer than $ih(y)$.

In other words, if $ih(x)$ lexicographically dominates $ih(y)$.

An alternative interpretation can be provided by means of the Lorenz domination.
According to the *ih*-index, *x* is considered as **more productive** than *y* if

- $ih_1(x) > ih_1(y)$ or
- $ih_1(x) = ih_1(y)$ and $ih_2(x) > ih_2(y)$, or
- $ih_1(x) = ih_1(y)$, $ih_2(x) = ih_2(y)$ and $ih_3(x) > ih_3(y)$,
- ... or if all comparable components are identical and $ih(x)$ is longer than $ih(y)$.

In other words, if $ih(x)$ **lexicographically** dominates $ih(y)$.

An alternative interpretation can be provided by means of the **Lorenz** domination.
Interpretation(s) of the ih-index

According to the ih-index, x is considered as more productive than y if

- $ih_1(x) > ih_1(y)$ or
- $ih_1(x) = ih_1(y)$ and $ih_2(x) > ih_2(y)$, or
- $ih_1(x) = ih_1(y)$, $ih_2(x) = ih_2(y)$ and $ih_3(x) > ih_3(y)$,
- ... or if all comparable components are identical and $ih(x)$ is longer than $ih(y)$.

In other words, if $ih(x)$ lexicographically dominates $ih(y)$.

An alternative interpretation can be provided by means of the Lorenz domination.
Interpretation(s) of the ih-index

According to the ih-index, x is considered as more productive than y if

- $ih_1(x) > ih_1(y)$ or
- $ih_1(x) = ih_1(y)$ and $ih_2(x) > ih_2(y)$, or
- $ih_1(x) = ih_1(y)$, $ih_2(x) = ih_2(y)$ and $ih_3(x) > ih_3(y)$,
- ... or if all comparable components are identical and $ih(x)$ is longer than $ih(y)$.

In other words, if $ih(x)$ lexicographically dominates $ih(y)$.

An alternative interpretation can be provided by means of the Lorenz domination.
Interpretation(s) of the ih-index

According to the ih-index, x is considered as more productive than y if

- $ih_1(x) > ih_1(y)$ or
- $ih_1(x) = ih_1(y)$ and $ih_2(x) > ih_2(y)$, or
- $ih_1(x) = ih_1(y)$, $ih_2(x) = ih_2(y)$ and $ih_3(x) > ih_3(y)$,
- ... or if all comparable components are identical and $ih(x)$ is longer than $ih(y)$.

In other words, if $ih(x)$ lexicographically dominates $ih(y)$.

An alternative interpretation can be provided by means of the Lorenz domination.
Interpretation(s) of the \(ih\)-index

According to the \(ih\)-index, \(x\) is considered as more productive than \(y\) if

- \(ih_1(x) > ih_1(y)\) or
- \(ih_1(x) = ih_1(y)\) and \(ih_2(x) > ih_2(y)\), or
- \(ih_1(x) = ih_1(y)\), \(ih_2(x) = ih_2(y)\) and \(ih_3(x) > ih_3(y)\),
- ... or if all comparable components are identical and \(ih(x)\) is longer than \(ih(y)\).

In other words, if \(ih(x)\) lexicographically dominates \(ih(y)\).

An alternative interpretation can be provided by means of the Lorenz domination.
Interpretation(s) of the *ih*-index

According to the *ih*-index, *x* is considered as **more productive** than *y* if

- $ih_1(x) > ih_1(y)$ or
- $ih_1(x) = ih_1(y)$ and $ih_2(x) > ih_2(y)$, or
- $ih_1(x) = ih_1(y)$, $ih_2(x) = ih_2(y)$ and $ih_3(x) > ih_3(y)$,
- ... or if all comparable components are identical and $ih(x)$ is longer than $ih(y)$.

In other words, if $ih(x)$ **lexicographically** dominates $ih(y)$.

An alternative interpretation can be provided by means of the **Lorenz** domination.
A **generalized index** is a function f which assigns to each vector x another vector $f(x) = (f_1(x), \ldots, f_{qx}(x))$ satisfying:

- **No publication/no citation** benchmark: if $x = \emptyset$ or if $x = (0, \ldots, 0)$, then $f(x) = \emptyset$;

- **Monotonicity**: if x is longer than y and greater than or equal to y (coordinate by coordinate), then $f(x)$ is longer than y and greater than or equal to $f(y)$ (coordinate by coordinate).
Examples (for cases when $x_1 > 0$)

\[f(x) = i h(x), \quad \text{i.e. } i h\text{-index} \]

\[f(x) = x, \quad \text{i.e. } x \text{ itself} \]

\[f(x) = \left(\frac{1}{k} \sum_{i=1}^{k} x_i \right)_{k \in \{1, \ldots, n\}}, \quad \text{i.e. the average numbers of citations} \]

\[f(x) = (h(x)), \quad \text{i.e. the unique component is the } h\text{-index} \]

\[f(x) = \left(\sqrt{\sum_{i=1}^{n} x_i^2} \right), \quad \text{i.e. the Euclidean index (Perry and Reny, AER, 2016)} \]

\[f(x) = \left(\sum_{i=1}^{n} x_i \right), \quad \text{i.e. total number of citations} \]

\[f(x) = (n), \quad \text{i.e. number of publications} \]

\[f(x) = \left(\max\{i = 1, \ldots, n : x_i > 0\} \right), \quad \text{i.e. number of cited publications} \]

\[f(x) = (x_1), \quad \text{i.e. number of citations of the most cited publication} \]
Examples (for cases when $x_1 > 0$)

\[f(x) = ih(x), \quad \text{i.e. } ih\text{-index} \]
\[f(x) = x, \quad \text{i.e. } x \text{ itself} \]
\[f(x) = \left(\frac{1}{k} \sum_{i=1}^{k} x_i \right)_{k \in \{1, \ldots, n\}}, \quad \text{i.e. the average numbers of citations} \]
\[f(x) = (h(x)), \quad \text{i.e. the unique component is the } h\text{-index} \]
\[f(x) = \left(\sqrt{\sum_{i=1}^{n} x_i^2} \right), \quad \text{i.e. the Euclidean index} \quad (\text{Perry and Reny, AER, 2016}) \]
\[f(x) = \left(\sum_{i=1}^{n} x_i \right), \quad \text{i.e. total number of citations} \]
\[f(x) = (n), \quad \text{i.e. number of publications} \]
\[f(x) = (\max\{i = 1, \ldots, n : x_i > 0\}), \quad \text{i.e. number of cited publications} \]
\[f(x) = (x_1), \quad \text{i.e. number of citations of the most cited publication} \]
Examples (for cases when $x_1 > 0$)

$f(x) = ih(x)$, i.e. ih-index

$f(x) = x$, i.e. x itself

$f(x) = \left(\frac{1}{k} \sum_{i=1}^{k} x_i\right)_{k \in \{1,...,n\}}$, i.e. the average numbers of citations

$f(x) = (h(x))$, i.e. the unique component is the h-index

$f(x) = (\sqrt{\sum_{i=1}^{n} x_i^2})$, i.e. the Euclidean index (Perry and Reny, AER, 2016)

$f(x) = (\sum_{i=1}^{n} x_i)$, i.e. total number of citations

$f(x) = (n)$, i.e. number of publications

$f(x) = (\max\{i = 1,\ldots,n : x_i > 0\})$, i.e. number of cited publications

$f(x) = (x_1)$, i.e. number of citations of the most cited publication
Examples (for cases when $x_1 > 0$)

\[
f(x) = ih(x), \quad \text{i.e. } ih\text{-index}
\]

\[
f(x) = x, \quad \text{i.e. } x \text{ itself}
\]

\[
f(x) = \left(\frac{1}{k} \sum_{i=1}^{k} x_i \right)_{k \in \{1, \ldots, n\}}, \quad \text{i.e. the average numbers of citations}
\]

\[
f(x) = (h(x)), \quad \text{i.e. the unique component is the } h\text{-index}
\]

\[
f(x) = \left(\sqrt{\sum_{i=1}^{n} x_i^2} \right), \quad \text{i.e. the Euclidean index (Perry and Reny, AER, 2016)}
\]

\[
f(x) = \left(\sum_{i=1}^{n} x_i \right), \quad \text{i.e. total number of citations}
\]

\[
f(x) = (n), \quad \text{i.e. number of publications}
\]

\[
f(x) = (\max\{i = 1, \ldots, n : x_i > 0\}), \quad \text{i.e. number of cited publications}
\]

\[
f(x) = (x_1), \quad \text{i.e. number of citations of the most cited publication}
\]
Examples (for cases when $x_1 > 0$)

\[f(x) = ih(x), \quad \text{i.e. } ih\text{-index} \]

\[f(x) = x, \quad \text{i.e. } x \text{ itself} \]

\[f(x) = \left(\frac{1}{k} \sum_{i=1}^{k} x_i \right)_{k \in \{1, \ldots, n\}}, \quad \text{i.e. the average numbers of citations} \]

\[f(x) = (h(x)), \quad \text{i.e. the unique component is the } h\text{-index} \]

\[f(x) = \left(\sqrt{\sum_{i=1}^{n} x_i^2} \right), \quad \text{i.e. the Euclidean index (Perry and Reny, AER, 2016)} \]

\[f(x) = \left(\sum_{i=1}^{n} x_i \right), \quad \text{i.e. total number of citations} \]

\[f(x) = (n), \quad \text{i.e. number of publications} \]

\[f(x) = \left(\max\{i = 1, \ldots, n : x_i > 0\} \right), \quad \text{i.e. number of cited publications} \]

\[f(x) = (x_1), \quad \text{i.e. number of citations of the most cited publication} \]
Examples (for cases when $x_1 > 0$)

\[f(x) = ih(x), \quad \text{i.e. } ih\text{-index} \]

\[f(x) = x, \quad \text{i.e. } x \text{ itself} \]

\[f(x) = \left(\frac{1}{k} \sum_{i=1}^{k} x_i \right)_{k \in \{1, \ldots, n\}}, \quad \text{i.e. the average numbers of citations} \]

\[f(x) = (h(x)), \quad \text{i.e. the unique component is the } h\text{-index} \]

\[f(x) = (\sqrt{\sum_{i=1}^{n} x_i^2}), \quad \text{i.e. the Euclidean index (Perry and Reny, AER, 2016)} \]

\[f(x) = (\sum_{i=1}^{n} x_i), \quad \text{i.e. total number of citations} \]

\[f(x) = (n), \quad \text{i.e. number of publications} \]

\[f(x) = (\max\{i = 1, \ldots, n : x_i > 0\}), \quad \text{i.e. number of cited publications} \]

\[f(x) = (x_1), \quad \text{i.e. number of citations of the most cited publication} \]
Examples (for cases when $x_1 > 0$)

\[f(x) = ih(x), \quad \text{i.e. } ih\text{-index} \]

\[f(x) = x, \quad \text{i.e. } x \text{ itself} \]

\[f(x) = \left(\frac{1}{k} \sum_{i=1}^{k} x_i \right)_{k \in \{1, \ldots, n\}}, \quad \text{i.e. the average numbers of citations} \]

\[f(x) = (h(x)), \quad \text{i.e. the unique component is the } h\text{-index} \]

\[f(x) = \left(\sqrt{\sum_{i=1}^{n} x_i^2} \right), \quad \text{i.e. the Euclidean index (Perry and Reny, AER, 2016)} \]

\[f(x) = (\sum_{i=1}^{n} x_i), \quad \text{i.e. total number of citations} \]

\[f(x) = (n), \quad \text{i.e. number of publications} \]

\[f(x) = (\max\{i = 1, \ldots, n : x_i > 0\}), \quad \text{i.e. number of cited publications} \]

\[f(x) = (x_1), \quad \text{i.e. number of citations of the most cited publication} \]
Examples (for cases when $x_1 > 0$)

\[
f(x) = ih(x), \quad \text{i.e. } ih\text{-index}
\]

\[
f(x) = x, \quad \text{i.e. } x \text{ itself}
\]

\[
f(x) = \left(\frac{1}{k} \sum_{i=1}^{k} x_i\right)_{k=\{1,\ldots,n\}}, \quad \text{i.e. } \text{the average numbers of citations}
\]

\[
f(x) = (h(x)), \quad \text{i.e. } \text{the unique component is the } h\text{-index}
\]

\[
f(x) = \left(\sqrt{\sum_{i=1}^{n} x_i^2}\right), \quad \text{i.e. } \text{the Euclidean index (Perry and Reny, AER, 2016)}
\]

\[
f(x) = (\sum_{i=1}^{n} x_i), \quad \text{i.e. } \text{total number of citations}
\]

\[
f(x) = (n), \quad \text{i.e. } \text{number of publications}
\]

\[
f(x) = (\max\{i = 1, \ldots, n : x_i > 0\}), \quad \text{i.e. } \text{number of cited publications}
\]

\[
f(x) = (x_1), \quad \text{i.e. } \text{number of citations of the most cited publication}
\]
Examples (for cases when $x_1 > 0$)

\[f(x) = ih(x), \quad \text{i.e. } ih\text{-index} \]

\[f(x) = x, \quad \text{i.e. } x \text{ itself} \]

\[f(x) = \left(\frac{1}{k} \sum_{i=1}^{k} x_i \right)_{k \in \{1, \ldots, n\}}, \quad \text{i.e. the average numbers of citations} \]

\[f(x) = (h(x)), \quad \text{i.e. the unique component is the } h\text{-index} \]

\[f(x) = \left(\sqrt{\sum_{i=1}^{n} x_i^2} \right), \quad \text{i.e. the Euclidean index (Perry and Reny, AER, 2016)} \]

\[f(x) = (\sum_{i=1}^{n} x_i), \quad \text{i.e. total number of citations} \]

\[f(x) = (n), \quad \text{i.e. number of publications} \]

\[f(x) = (\max\{i = 1, \ldots, n : x_i > 0\}), \quad \text{i.e. number of cited publications} \]

\[f(x) = (x_1), \quad \text{i.e. number of citations of the most cited publication} \]
Axioms

One citation case. If the total of citations in x is one, then $f(x) = (1)$.

Example: if $x = (1, 0, \ldots, 0)$, then $f(x) = (1)$.

Homogeneity. If y is obtained from x by multiplying by $c \in \mathbb{N}$ the number of citations of each publication, and then by multiplying by c the number of publications, then $f(y)$ is equal to c times $f(x)$.

Example: let $x = (4, 2, 1)$, $c = 3$, and $y = (12, 12, 12, 6, 6, 6, 3, 3, 3)$. If $f(x) = (3, 2)$ has already been computed, then $f(y) = 3 \times f(x) = (9, 3)$.
Axioms

One citation case. If the total of citations in x is one, then $f(x) = (1)$.

Example: if $x = (1, 0, \ldots, 0)$, then $f(x) = (1)$.

Homogeneity. If y is obtained from x by multiplying by $c \in \mathbb{N}$ the number of citations of each publication, and then by multiplying by c the number of publications, then $f(y)$ is equal to c times $f(x)$.

Example: let $x = (4, 2, 1)$, $c = 3$, and $y = (12, 12, 12, 6, 6, 6, 3, 3, 3)$. If $f(x) = (3, 2)$ has already been computed, then $f(y) = 3 \times f(x) = (9, 3)$.
Axioms

One citation case. If the total of citations in x is one, then $f(x) = (1)$.

Example: if $x = (1, 0, \ldots, 0)$, then $f(x) = (1)$.

Homogeneity. If y is obtained from x by multiplying by $c \in \mathbb{N}$ the number of citations of each publication, and then by multiplying by c the number of publications, then $f(y)$ is equal to c times $f(x)$.

Example: let $x = (4, 2, 1)$, $c = 3$, and $y = (12, 12, 12, 6, 6, 6, 3, 3, 3)$. If $f(x) = (3, 2)$ has already been computed, then $f(y) = 3 \times f(x) = (9, 3)$.
Axioms

One citation case. If the total of citations in x is one, then $f(x) = (1)$.

Example: if $x = (1, 0, \ldots, 0)$, then $f(x) = (1)$.

Homogeneity. If y is obtained from x by multiplying by $c \in \mathbb{N}$ the number of citations of each publication, and then by multiplying by c the number of publications, then $f(y)$ is equal to c times $f(x)$.

Example: let $x = (4, 2, 1)$, $c = 3$, and $y = (12, 12, 12, 6, 6, 6, 3, 3, 3)$. If $f(x) = (3, 2)$ has already been computed, then $f(y) = 3 \times f(x) = (9, 3)$.
Axioms

Independence of superfluous citations. Adding extra citations to the $f_1(x)$ most-cited publications does not alter the generalized index.

Example: if $x = (7, 4, 2, 1)$, $f_1(x) = 2$ and $y = (9, 5, 2, 1)$ then $f(y) = f(x)$.

Independence of irrelevant publications. Adding publications that have at most $f_k(x)$ publications does not alter the first k components of the generalized index.

Example: if $x = (7, 4, 2, 1)$, $f_2(x) = 2$ and $y = (7, 4, 2, 2, 2, 2, 2, 1, 1, 0, 0, 0)$ then $f_1(y) = f_1(x)$ and $f_2(y) = f_2(x)$.
Axioms

Independence of superfluous citations. Adding extra citations to the $f_1(x)$ most-cited publications does not alter the generalized index.

Example: if $x = (7, 4, 2, 1)$, $f_1(x) = 2$ and $y = (9, 5, 2, 1)$ then $f(y) = f(x)$.

Independence of irrelevant publications. Adding publications that have at most $f_k(x)$ publications does not alter the first k components of the generalized index.

Example: if $x = (7, 4, 2, 1)$, $f_2(x) = 2$ and $y = (7, 4, 2, 2, 2, 2, 1, 1, 0, 0, 0)$ then $f_1(y) = f_1(x)$ and $f_2(y) = f_2(x)$.
Axioms

Independence of superfluous citations. Adding extra citations to the $f_1(x)$ most-cited publications does not alter the generalized index.

Example: if $x = (7, 4, 2, 1)$, $f_1(x) = 2$ and $y = (9, 5, 2, 1)$ then $f(y) = f(x)$.

Independence of irrelevant publications. Adding publications that have at most $f_k(x)$ publications does not alter the first k components of the generalized index.

Example: if $x = (7, 4, 2, 1)$, $f_2(x) = 2$ and $y = (7, 4, 2, 2, 2, 2, 2, 1, 1, 0, 0, 0)$ then $f_1(y) = f_1(x)$ and $f_2(y) = f_2(x)$.
Axioms

Independence of superfluous citations. Adding extra citations to the \(f_1(x) \) most-cited publications does not alter the generalized index.

Example: if \(x = (7, 4, 2, 1) \), \(f_1(x) = 2 \) and \(y = (9, 5, 2, 1) \) then \(f(y) = f(x) \).

Independence of irrelevant publications. Adding publications that have at most \(f_k(x) \) publications does not alter the first \(k \) components of the generalized index.

Example: if \(x = (7, 4, 2, 1) \), \(f_2(x) = 2 \) and \(y = (7, 4, 2, 2, 2, 2, 1, 1, 0, 0, 0) \) then \(f_1(y) = f_1(x) \) and \(f_2(y) = f_2(x) \).
Consistency. If y is obtained from x by removing the $f_1(x) + \cdots + f_k(x)$ most-cited publications, then $f(y)$ coincides with components $k + 1, k + 2, \ldots$ of $f(x)$.

Example: (for the simpler case $k = 1$) if $x = (7, 6, 4, 2, 1)$, $f(x) = (2, 2, 1)$ and $y = (4, 2, 1)$, then $f(y) = (f_2(x), f_3(x)) = (2, 1)$.
Axioms

Consistency. If y is obtained from x by removing the $f_1(x) + \cdots + f_k(x)$ most-cited publications, then $f(y)$ coincides with components $k + 1, k + 2, \ldots$ of $f(x)$.

Example: (for the simpler case $k = 1$) if $x = (7, 6, 4, 2, 1)$, $f(x) = (2, 2, 1)$ and $y = (4, 2, 1)$, then $f(y) = (f_2(x), f_3(x)) = (2, 1)$.
Characterizations

Theorem

The *ih*-index is the unique generalized index that satisfies One citation case, Homogeneity, Independence of superfluous citations, Independence of irrelevant publications, and Consistency.
Characterizations

The (generalized) h-index $f(x) = (h(x))$ satisfies all axioms except Consistency.

Strong independence of irrelevant publications. Adding publications that have at most $f_1(x)$ citations does not alter the generalized index.

Theorem

The (generalized) h-index $f(x) = (h(x))$ is the unique generalized index that satisfies One citation case, Homogeneity, Independence of superfluous citations, and Strong independence of irrelevant publications.
Characterizations

The (generalized) h-index $f(x) = (h(x))$ satisfies all axioms except Consistency.

Strong independence of irrelevant publications. Adding publications that have at most $f_1(x)$ citations does not alter the generalized index.

Theorem

The (generalized) h-index $f(x) = (h(x))$ is the unique generalized index that satisfies One citation case, Homogeneity, Independence of superfluous citations, and Strong independence of irrelevant publications.
The (generalized) h-index $f(x) = (h(x))$ satisfies all axioms except Consistency.

Strong independence of irrelevant publications. Adding publications that have at most $f_1(x)$ citations does not alter the generalized index.

Theorem

The (generalized) h-index $f(x) = (h(x))$ is the unique generalized index that satisfies One citation case, Homogeneity, Independence of superfluous citations, and Strong independence of irrelevant publications.
Correspondence between scientific productions and sports records:

- publications \leftrightarrow matches won by a player/team.
- citations of a publication \leftrightarrow matches won by the defeated player/team.

Example: ATP 2015 season of N. Djokovic. 82 matches won, among which 6 times against A. Murray, who has won 63 matches (more than any other player defeated by Djokovic).

\implies Djokovic_2015 = $(63, 63, 63, 63, 63, 63, 61, 61, 61, 61, 60, 60, 60, 60, 60, 57, 57, 57, 57, 57, 57, 54, 54, 54, 53, 53, 53, 51, 51, 46, 45, 45, 45, 45, 43, 43, 41, 41, 37, 37, 37, 37, 35, 35, 35, 35, 34, 34, 33, 33, 32, 32, 32, 32, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 27, 27, 27, 27, 27, 27, 26, 26, 25, 24, 22, 22, 21, 20, 20, 20, 19, 18, 15, 14, 14, 13, 10, 8, 4)$.
Correspondence between scientific productions and sports records:

publications \leftrightarrow matches won by a player/team.

citations of a publication \leftrightarrow matches won by the defeated player/team.

Example: ATP 2015 season of N. Djokovic. 82 matches won, among which 6 times against A. Murray, who has won 63 matches (more than any other player defeated by Djokovic).

\implies Djokovic_2015 =

(63, 63, 63, 63, 63, 63, 63, 61, 61, 61, 61, 60, 60, 60, 60, 60, 57, 57, 57, 57, 57, 57, 54, 54, 54, 54, 53, 53, 53, 51, 51, 46, 45, 45, 45, 45, 43, 43, 41, 41, 37, 37, 37, 37, 37, 35, 35, 35, 35, 35, 34, 34, 33, 33, 32, 32, 32, 32, 32, 31, 31, 31, 31, 30, 30, 30, 30, 30, 27, 27, 27, 27, 27, 27, 26, 26, 25, 24, 22, 22, 21, 20, 20, 20, 20, 19, 18, 15, 14, 14, 13, 10, 8, 4).
Correspondence between scientific productions and sports records:

publications \iff matches won by a player/team.

citations of a publication \iff matches won by the defeated player/team.

Example: ATP 2015 season of N. Djokovic. 82 matches won, among which 6 times against A. Murray, who has won 63 matches (more than any other player defeated by Djokovic).

\implies Djokovic_2015 =

(63, 63, 63, 63, 63, 63, 61, 61, 61, 61, 61, 60, 60, 60, 60, 57, 57, 57, 57, 57, 54, 54, 54, 53, 53, 53, 51, 51, 46, 45, 45, 45, 45, 43, 43, 41, 41, 37, 37, 37, 37, 35, 35, 35, 34, 34, 33, 33, 32, 32, 32, 32, 31, 31, 31, 31, 30, 30, 30, 30, 27, 27, 27, 27, 27, 26, 26, 25, 24, 22, 22, 21, 20, 20, 20, 19, 18, 15, 14, 14, 13, 10, 8, 4).
Sports rankings

Correspondence between scientific productions and sports records:

publications \leftrightarrow matches won by a player/team.

citations of a publication \leftrightarrow matches won by the defeated player/team.

Example: ATP 2015 season of N. Djokovic. 82 matches won, among which 6 times against A. Murray, who has won 63 matches (more than any other player defeated by Djokovic).

\Rightarrow Djokovic_2015 =

$(63, 63, 63, 63, 63, 63, 61, 61, 61, 61, 60, 60, 60, 60, 60, 57, 57, 57, 57, 57, 54, 54, 54, 53, 53, 53, 51, 51, 46, 45, 45, 45, 45, 43, 43, 41, 41, 37, 37, 37, 37, 37, 35, 35, 35, 35, 34, 34, 33, 33, 32, 32, 32, 32, 31, 31, 31, 31, 30, 30, 30, 30, 30, 27, 27, 27, 27, 27, 26, 26, 25, 24, 22, 22, 21, 20, 20, 20, 19, 18, 15, 14, 14, 13, 10, 8, 4)$.
Correspondence between scientific productions and sports records:

publications \leftrightarrow matches won by a player/team.

citations of a publication \leftrightarrow matches won by the defeated player/team.

Example: ATP 2015 season of N. Djokovic. 82 matches won, among which 6 times against A. Murray, who has won 63 matches (more than any other player defeated by Djokovic).

\implies Djokovic_2015 =

$$(63, 63, 63, 63, 63, 61, 61, 61, 61, 60, 60, 60, 60, 60, 57, 57, 57, 57, 57, 54, 54,$$
$$54, 53, 53, 53, 51, 51, 46, 45, 45, 45, 45, 43, 43, 41, 41, 37, 37, 37, 37, 35, 35, 35, 34,$$
$$34, 33, 33, 32, 32, 32, 32, 31, 31, 31, 31, 30, 30, 30, 30, 30, 27, 27, 27, 27, 27, 27,$$
$$26, 26, 25, 24, 22, 22, 21, 20, 20, 20, 20, 19, 18, 15, 14, 14, 13, 10, 8, 4).$$
2014–2015 French League 1 football

<table>
<thead>
<tr>
<th>Team</th>
<th>ih-index (rank)</th>
<th>League pts (rank)</th>
<th>Diff.</th>
<th>TV rights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paris</td>
<td>(12, 8, 4) (1)</td>
<td>83 (1)</td>
<td>=</td>
<td>15 714 696 €</td>
</tr>
<tr>
<td>Lyon</td>
<td>(12, 8, 2) (2)</td>
<td>75 (2)</td>
<td>=</td>
<td>13 663 055 €</td>
</tr>
<tr>
<td>Marseille</td>
<td>(12, 7, 2) (3)</td>
<td>69 (4)</td>
<td>▲1</td>
<td>10 323 682 €</td>
</tr>
<tr>
<td>Monaco</td>
<td>(12, 7, 1) (4)</td>
<td>71 (3)</td>
<td>▼1</td>
<td>11 873 326 €</td>
</tr>
<tr>
<td>Saint-Etienne</td>
<td>(12, 7) (5)</td>
<td>69 (5)</td>
<td>=</td>
<td>8 970 472 €</td>
</tr>
<tr>
<td>Bordeaux</td>
<td>(12, 5) (6)</td>
<td>63 (6)</td>
<td>=</td>
<td>7 802 783 €</td>
</tr>
<tr>
<td>Guingamp</td>
<td>(12, 3) (7)</td>
<td>49 (10)</td>
<td>▲3</td>
<td>4 452 497 €</td>
</tr>
<tr>
<td>Montpellier</td>
<td>(11, 5) (8)</td>
<td>56 (7)</td>
<td>▼1</td>
<td>6 787 876 €</td>
</tr>
<tr>
<td>Lille</td>
<td>(11, 5) (9)</td>
<td>56 (8)</td>
<td>▼1</td>
<td>5 893 011 €</td>
</tr>
<tr>
<td>Nice</td>
<td>(11, 2) (10)</td>
<td>48 (11)</td>
<td>▲1</td>
<td>3 874 109 €</td>
</tr>
<tr>
<td>Caen</td>
<td>(11, 1) (11)</td>
<td>46 (13)</td>
<td>▲2</td>
<td>2 924 680 €</td>
</tr>
<tr>
<td>Bastia</td>
<td>(11, 1) (12)</td>
<td>47 (12)</td>
<td>=</td>
<td>3 372 112 €</td>
</tr>
<tr>
<td>Reims</td>
<td>(11, 1) (13)</td>
<td>44 (15)</td>
<td>▲2</td>
<td>2 215 336 €</td>
</tr>
<tr>
<td>Toulouse</td>
<td>(11, 1) (14)</td>
<td>42 (17)</td>
<td>▲3</td>
<td>1 669 686 €</td>
</tr>
<tr>
<td>Rennes</td>
<td>(10, 3) (15)</td>
<td>50 (9)</td>
<td>▼6</td>
<td>5 129 102 €</td>
</tr>
<tr>
<td>Nantes</td>
<td>(10, 1) (16)</td>
<td>45 (14)</td>
<td>▼2</td>
<td>2 542 725 €</td>
</tr>
<tr>
<td>Lorient</td>
<td>(9, 3) (17)</td>
<td>43 (16)</td>
<td>▼1</td>
<td>1 920 685 €</td>
</tr>
<tr>
<td>Evian</td>
<td>(7, 4) (18)</td>
<td>37 (18)</td>
<td>=</td>
<td>0 €</td>
</tr>
<tr>
<td>Lens</td>
<td>(7) (19)</td>
<td>29 (20)</td>
<td>▲1</td>
<td>0 €</td>
</tr>
<tr>
<td>Metz</td>
<td>(7) (20)</td>
<td>30 (19)</td>
<td>▼1</td>
<td>0 €</td>
</tr>
</tbody>
</table>

Béal, Ferrières, Rémiła, Solal

10th seminar day – OSGAD, November 8th, 2016
Classical h-index not very relevant: too many teams with the same h-index.

Tie/draw not taken into account by the ih-index \Rightarrow incentive to win comparable to the rule giving three points for a win.

Same 5 teams qualified for European competitions (only 2 teams swap positions); same 3 teams relegated to the second division.

Some significant differences in ranking \Rightarrow important consequences on the part of the TV rights depending on the current season’s results.
Classical h-index not very relevant: too many teams with the same h-index.

Tie/draw not taken into account by the ih-index \implies incentive to win comparable to the rule giving three points for a win.

Same 5 teams qualified for European competitions (only 2 teams swap positions); same 3 teams relegated to the second division.

Some significant differences in ranking \implies important consequences on the part of the TV rights depending on the current season’s results.
Classical h-index not very relevant: too many teams with the same h-index.

Tie/draw not taken into account by the ih-index \implies incentive to win comparable to the rule giving three points for a win.

Same 5 teams qualified for European competitions (only 2 teams swap positions); same 3 teams relegated to the second division.

Some significant differences in ranking \implies important consequences on the part of the TV rights depending on the current season’s results.
Classical h-index not very relevant: too many teams with the same h-index.

Tie/draw not taken into account by the ih-index \implies incentive to win comparable to the rule giving three points for a win.

Same 5 teams qualified for European competitions (only 2 teams swap positions); same 3 teams relegated to the second division.

Some significant differences in ranking \implies important consequences on the part of the TV rights depending on the current season’s results.
Is the ih-index close or not to the official ATP ranking?

<table>
<thead>
<tr>
<th>Player</th>
<th>ih-index (rank)</th>
<th>ATP points (rank)</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novak Djokovic</td>
<td>(37, 26, 14, 4, 1)</td>
<td>16 585 (1)</td>
<td>=</td>
</tr>
<tr>
<td>Andy Murray</td>
<td>(31, 23, 6, 2, 1)</td>
<td>8 945 (2)</td>
<td>=</td>
</tr>
<tr>
<td>Roger Federer</td>
<td>(31, 18, 11, 1)</td>
<td>8 265 (3)</td>
<td>=</td>
</tr>
<tr>
<td>Stan Wawrinka</td>
<td>(30, 16, 6, 2)</td>
<td>6 865 (4)</td>
<td>=</td>
</tr>
<tr>
<td>Rafael Nadal</td>
<td>(28, 19, 9, 3)</td>
<td>5 230 (5)</td>
<td>=</td>
</tr>
<tr>
<td>Tomas Berdych</td>
<td>(27, 20, 7, 2, 1)</td>
<td>4 620 (6)</td>
<td>=</td>
</tr>
<tr>
<td>Key Nishikori</td>
<td>(26, 16, 7, 2)</td>
<td>4 235 (8)</td>
<td>▲1</td>
</tr>
<tr>
<td>John Isner</td>
<td>(25, 13, 5, 2)</td>
<td>2 495 (11)</td>
<td>▲3</td>
</tr>
<tr>
<td>Richard Gasquet</td>
<td>(25, 13, 4, 1)</td>
<td>2 850 (9)</td>
<td>=</td>
</tr>
<tr>
<td>David Ferrer</td>
<td>(24, 18, 9, 2)</td>
<td>4 305 (7)</td>
<td>▼3</td>
</tr>
<tr>
<td>Gilles Simon</td>
<td>(24, 12, 4)</td>
<td>2 145 (15)</td>
<td>▲4</td>
</tr>
<tr>
<td>Kevin Anderson</td>
<td>(23, 15, 4, 2, 2)</td>
<td>2 475 (12)</td>
<td>=</td>
</tr>
<tr>
<td>Roberto Bautista Agut</td>
<td>(22, 12, 4, 2)</td>
<td>1 480 (25)</td>
<td>▲12</td>
</tr>
<tr>
<td>Ivo Karlovic</td>
<td>(22, 12, 3)</td>
<td>1 485 (23)</td>
<td>▲9</td>
</tr>
<tr>
<td>Dominic Thiem</td>
<td>(22, 12, 2)</td>
<td>1 600 (20)</td>
<td>▲5</td>
</tr>
<tr>
<td>Gaël Monfils</td>
<td>(21, 10, 2)</td>
<td>1 485 (24)</td>
<td>▲8</td>
</tr>
<tr>
<td>Jo-Wilfried Tsonga</td>
<td>(21, 9, 2)</td>
<td>2 635 (10)</td>
<td>▼7</td>
</tr>
<tr>
<td>Milos Raonic</td>
<td>(21, 9, 2)</td>
<td>2 170 (14)</td>
<td>▼4</td>
</tr>
<tr>
<td>Viktor Troicki</td>
<td>(21, 8, 4)</td>
<td>1 487 (22)</td>
<td>▲3</td>
</tr>
<tr>
<td>Feliciano Lopez</td>
<td>(21, 8, 2, 1)</td>
<td>1 690 (17)</td>
<td>▼3</td>
</tr>
</tbody>
</table>
9 (47 resp.) players are common to both both top 10 (50 resp.).

Very few equal i_h-indices for top 100 players.

Notable differences in rankings. Four possible explanations:

1. injured players with good performances (Tsonga): higher ATP that i_h-index ranking,
2. players with points coming from the second (challenger tour) or third (ITF tour) level tournaments (Paire): higher ATP that i_h-index ranking,
3. players with many successes in small ATP first-level tournaments (Thiem): higher i_h-index than ATP ranking,
4. players with many qualification wins (Baghdatis): higher i_h-index than ATP ranking.
2015 ATP tennis

9 (47 resp.) players are common to both both top 10 (50 resp.).

Very few equal ih-indices for top 100 players.

Notable differences in rankings. Four possible explanations:

1. injured players with good performances (Tsonga): higher ATP than ih-index ranking,

2. players with points coming from the second (challenger tour) or third (ITF tour) level tournaments (Paire): higher ATP than ih-index ranking,

3. players with many successes in small ATP first-level tournaments (Thiem): higher ih-index than ATP ranking,

4. players with many qualification wins (Baghdatis): higher ih-index than ATP ranking.
2015 ATP tennis

9 (47 resp.) players are common to both both top 10 (50 resp.).

Very few equal ih-indices for top 100 players.

Notable differences in rankings. Four possible explanations:

1. injured players with good performances (Tsonga): higher ATP than ih-index ranking,
2. players with points coming from the second (challenger tour) or third (ITF tour) level tournaments (Paire): higher ATP than ih-index ranking,
3. players with many successes in small ATP first-level tournaments (Thiem): higher ih-index than ATP ranking,
4. players with many qualification wins (Baghdatis): higher ih-index than ATP ranking.
2015 ATP tennis

9 (47 resp.) players are common to both top 10 (50 resp.).

Very few equal ih-indices for top 100 players.

Notable differences in rankings. Four possible explanations:

1. injured players with good performances (Tsonga): higher ATP than ih-index ranking,
2. players with points coming from the second (challenger tour) or third (ITF tour) level tournaments (Paire): higher ATP than ih-index ranking,
3. players with many successes in small ATP first-level tournaments (Thiem): higher ih-index than ATP ranking,
4. players with many qualification wins (Baghdatis): higher ih-index than ATP ranking.
9 (47 resp.) players are common to both both top 10 (50 resp.).

Very few equal ih-indices for top 100 players.

Notable differences in rankings. Four possible explanations:

1. injured players with good performances (Tsonga): higher ATP than ih-index ranking,
2. players with points coming from the second (challenger tour) or third (ITF tour) level tournaments (Paire): higher ATP than ih-index ranking,
3. players with many successes in small ATP first-level tournaments (Thiem): higher ih-index than ATP ranking,
4. players with many qualification wins (Baghdatis): higher ih-index than ATP ranking.
9 (47 resp.) players are common to both both top 10 (50 resp.).

Very few equal ih-indices for top 100 players.

Notable differences in rankings. Four possible explanations:

1. injured players with good performances (Tsonga): higher ATP than ih-index ranking,
2. players with points coming from the second (challenger tour) or third (ITF tour) level tournaments (Paire): higher ATP than ih-index ranking,
3. players with many successes in small ATP first-level tournaments (Thiem): higher ih-index than ATP ranking,
4. players with many qualification wins (Baghdatis): higher ih-index than ATP ranking.
2015 ATP tennis

9 (47 resp.) players are common to both both top 10 (50 resp.).

Very few equal ih-indices for top 100 players.

Notable differences in rankings. Four possible explanations:

1. injured players with good performances (Tsonga): higher ATP that ih-index ranking,
2. players with points coming from the second (challenger tour) or third (ITF tour) level tournaments (Paire): higher ATP that ih-index ranking,
3. players with many successes in small ATP first-level tournaments (Thiem): higher ih-index than ATP ranking,
4. players with many qualification wins (Baghdatis): higher ih-index than ATP ranking.
Example for the Eastern conference

<table>
<thead>
<tr>
<th>Team</th>
<th>(ih)-index (rank)</th>
<th>Winning % (rank)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toronto Raptors</td>
<td>(35, 17, 4) (1)</td>
<td>0.683 (2)</td>
<td>▲1</td>
</tr>
<tr>
<td>Cleveland Cavaliers</td>
<td>(33, 18, 6) (2)</td>
<td>0.695 (1)</td>
<td>▼1</td>
</tr>
<tr>
<td>Atlanta Hawks</td>
<td>(33, 12, 3) (3)</td>
<td>0.585 (4)</td>
<td>▲1</td>
</tr>
<tr>
<td>Miami Heats</td>
<td>(33, 12, 3) (4)</td>
<td>0.585 (3)</td>
<td>▼1</td>
</tr>
<tr>
<td>Boston Celtics</td>
<td>(33, 11, 3) (5)</td>
<td>0.585 (5)</td>
<td>=</td>
</tr>
<tr>
<td>Charlotte Hornets</td>
<td>(32, 12, 4) (6)</td>
<td>0.585 (6)</td>
<td>=</td>
</tr>
<tr>
<td>Detroit Pistons</td>
<td>(32, 10, 2) (7)</td>
<td>0.537 (8)</td>
<td>▲1</td>
</tr>
<tr>
<td>Indiana Pacers</td>
<td>(31, 11, 3) (8)</td>
<td>0.549 (7)</td>
<td>▼1</td>
</tr>
<tr>
<td>Chicago Bulls</td>
<td>(31, 10, 1) (9)</td>
<td>0.512 (9)</td>
<td>=</td>
</tr>
<tr>
<td>Washington Wizards</td>
<td>(30, 10, 1) (10)</td>
<td>0.500 (10)</td>
<td>=</td>
</tr>
<tr>
<td>Orlando Magic</td>
<td>(27, 8) (11)</td>
<td>0.427 (11)</td>
<td>=</td>
</tr>
<tr>
<td>Milwaukee Bucks</td>
<td>(24, 9) (12)</td>
<td>0.402 (12)</td>
<td>=</td>
</tr>
<tr>
<td>New York Knicks</td>
<td>(23, 9) (13)</td>
<td>0.390 (13)</td>
<td>=</td>
</tr>
<tr>
<td>Brooklyn Nets</td>
<td>(19, 2) (14)</td>
<td>0.256 (14)</td>
<td>=</td>
</tr>
<tr>
<td>Philadelphia 76ers</td>
<td>(10) (15)</td>
<td>0.122 (15)</td>
<td>=</td>
</tr>
</tbody>
</table>
Same top 16 teams qualified for the playoff.

Small differences \implies switches in positions in the bracket (can cancel the home-court advantage).

No difference in ranking for the bottom 14 teams \implies no changes regarding the chances to get the best position in the next NBA draft.
Same top 16 teams qualified for the playoff.

Small differences \Longrightarrow switches in positions in the bracket (can cancel the home-court advantage).

No difference in ranking for the bottom 14 teams

\Longrightarrow no changes regarding the chances to get the best position in the next NBA draft.
Same top 16 teams qualified for the playoff.

Small differences \Rightarrow switches in positions in the bracket (can cancel the home-court advantage).

No difference in ranking for the bottom 14 teams

\Rightarrow no changes regarding the chances to get the best position in the next NBA draft.
Same top 16 teams qualified for the playoff.

Small differences \implies switches in positions in the bracket (can cancel the home-court advantage).

No difference in ranking for the bottom 14 teams

\implies no changes regarding the chances to get the best position in the next NBA draft.